Transferring Landmark Annotations for Cross-Dataset Face Alignment

نویسندگان

  • Shizhan Zhu
  • Cheng Li
  • Chen Change Loy
  • Xiaoou Tang
چکیده

Dataset bias is a well known problem in object recognition domain. This issue, nonetheless, is rarely explored in face alignment research. In this study, we show that dataset plays an integral part of face alignment performance. Specifically, owing to face alignment dataset bias, training on one database and testing on another or unseen domain would lead to poor performance. Creating an unbiased dataset through combining various existing databases, however, is non-trivial as one has to exhaustively re-label the landmarks for standardisation. In this work, we propose a simple and yet effective method to bridge the disparate annotation spaces between databases, making datasets fusion possible. We show extensive results on combining various popular databases (LFW, AFLW, LFPW, HELEN) for improved cross-dataset and unseen data alignment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets

In this paper we make the first effort, to the best of our knowledge, to combine multiple face landmark datasets with different landmark definitions into a super dataset, with a union of all landmark types computed in each image as output. Our approach is flexible, and our system can optionally use known landmarks in the target dataset to constrain the localization. Our novel pipeline is built ...

متن کامل

Learning and Transferring Multi-task Deep Representation for Face Alignment

Facial landmark detection of face alignment has long been impeded by the problems of occlusion and pose variation. Instead of treating the detection task as a single and independent problem, we investigate the possibility of improving detection robustness through multitask learning. Specifically, we wish to optimize facial landmark detection together with heterogeneous but subtly correlated tas...

متن کامل

How far are we from solving the 2D&3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)

This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a ver...

متن کامل

Towards Arbitrary-View Face Alignment by Recommendation Trees

Learning to simultaneously handle face alignment of arbitrary views, e.g. frontal and profile views, appears to be more challenging than we thought. The difficulties lay in i) accommodating the complex appearance-shape relations exhibited in different views, and ii) encompassing the varying landmark point sets due to self-occlusion and different landmark protocols. Most existing studies approac...

متن کامل

Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation

Despite much interest in face alignment in recent years, the large majority of work has focused on near-frontal faces. Algorithms typically break down on profile faces, or are too slow for real-time applications. In this work we propose an efficient approach to face alignment that can handle 180 degrees of head rotation in a unified way (e.g., without resorting to view-based models) using 2D tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1409.0602  شماره 

صفحات  -

تاریخ انتشار 2014